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ABSTRACT

The paper is divided into two parts.

In Part I problems referring to guidance requirements are

solved following the general approach of Ref.1; errors in velo-

city and angles, represented by means of errors in limiting conic

parameters. produce variations in maximum deceleration total

heat transferred angular ranges: etc, Charts to evaluate such

variations are described.

In Part II perturbations with respect to the simplifying as-

sumptions are considered and a. general small-perturbations theo

ry is developed. Any perturbation gives rise to changes in the

limiting conic parameters: by considering the effect of a unit

perturbation the effect of a distributed set of them is obtained

by simple integration.



INTRODUCTION

Safe landing of a spacecraft requires as well known, that

some prescribed boundin& values of heat transferred, maximum de-

celeration, range traveled, be not overcome. Tiis can be achieved

by prescribing an adequate program of lift and drag modulation:

but - once this has been done - a major problem is a guidance

problem, i.e., to give the proper velocity vector to the space-

craft at a given point.

Following a proceeding work of the Author (Ref 1), instead of

the velocity vector, and. without any need to define a "re-entry

altitude", the parameters of the limiting, or approach conic can

be selected. Thus, the problem ariaes to evaluate the effects

on engineering quantities (such as heat, deceleration, range,

etc.) of errors on such limiting conic parameters, or, converse-

ly, to evaluate maximum tolerable errors in limiting conic para-

meters so as to preven undue overcoming of engineering quanti-

ties boundaries. This can be done if a complete set of results,

connecting engineering quantities to conic parameters is availa-

ble; if a graphical presentation is prepared, very simple con-

structions allow a ready answer to the most of guidance require-

ments problems.

Some errors in the evaluation of such guidance problems can
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arise from the simplified scheme upon which the theoretical a-

nalysis is performed. Secondary causes can sometimes produce no

ticeable effects, which are to be calculated, If the cause" is

a first-order one a linear theory of small-perturbations can be

developed, Disturbances arising from nonsphericityofthe earth

variation of gravity, mass changes dcuring flight (ablation) can

be adequately represented by disturbing forces acting along the

various points of the trajectory: and the basic singularLty is

then the effect of a unit pulse acting at a generic point of the

trajectory. By using the approach of limiting conic parameters,

the said disturbing pulse can be regarded as that producing a

change in the limiting conic parameters of the portion of tra-

jectory following it. And, so, each point of the disturbed tra-

jectory is considered as belonging to a (fictitious) trajectory

whose limiting conic is changed with respect to the undisturbed

one; the change is given, by the sum of those produced by the di-

sturbances preceeding the point under concern.



PART I

GUIDANCE REQUIREMENTS FOR :RE- ENTRY.

I.- Introductory remarks and recalls on similar solutions,.

It has.been shown in.Ref. 1 that re-entry trajectories ,of

spacecrafts are described by the two simultaneous differential

equations:

2d I + h L kp, 0

dr r2 cos26 w2  D cos 3  0

h(1
d log - P

W2 + ,(I -- tan 0 0dr si n 0 D

Here the independent..variable r isthe~diatance from the earth's

center, whereas the unknowns are .e (flight path angle).and w

(areal velocity{velocit .. V)xr cos) ; h is the gravitational

constant (1gravity acceleration g--2r 2  p is the density. The

parameter k is equal to (CA)Ia , (where CD is the drag

coefficient, A is the frontal aret, a is the bodymass), and

,can be modulated along the trajectory, as well as the lift/drag

ratio (LID). Modulation can also include variation of C,)vs(L/D)

(Ref. 2).

Eqs. (1) were solved in Ref. (1) for the density law pr2=const., (a,- 900,

for the earth). It should. be pointed out that such law is prac-
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tically coincident with the commonly accepted one pefiZ=const.

(with z = altitude, = =earth radius and lends itself much better

for similarity purposes.

In order to obtain ,similarity laws it is interesting to take

as reference values the quantities at the point where the total

deceleration-xeachesits maximum valueor deceleration peek (DP).

If there is more than one deceleration peak, reference can be

made to any one of them. Quantities at DP (denoted by a star)

are connected by the equation:

kop*r* = a.s*in0, (2)

where: k, is the value of k at DP; and:

a - { d(r/r.) a D (3)S .in, 8 I
" - (

n. D

Thus, if the non-dimensional abscissa is introduced:

I t rj (4)

r

and it is set:

L
k k.71( ) ;D . Xy (f) (5)

Eqs. (1) can. be reduced, in nondimensional form, to the only
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equation:

d log{ 7 c(a*sino*)(I-!) _ d +(I-)_ 2
( -cos 3 dg cos

+ (-a*sinO*).q(I1-)" (IX n) =0 (6)sinO

The boundary conditions to. Eqs. (6) can be established in two

different ways. According to the first way, values of maximum

deceleration (n*g,) and angle ., can be prescribed at DP

(f = 0). According to the alternative way, it is seen that the

limiting., form of Eqs. (1) - as p approaches zero - yield the two

properties of the kepleria. conic- areal velocity w -= const. ;

total. energy E.= V2 - h/r = const. And so, the boundary conditions

to Kqs. (6) may aelso prescribe the nondimensional limiting value

of the conic in variants:

Lin K = const.

as hr* (7)

V' - (h/r).lira E = cons t .
h/r.

Since, however, the two alternative ways .of assigning boundary

conditions to Eq.(6)'must provide - obviously - the same solu-

tion - there must be obviously a correspondence of the type:

e = c (n., 0,) n.= n.(C , K) 1
K (8)

K = K (an., 6 ) = O.(E , K)J
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The problem is so established in.a similar form (since the

ballistic parameter iseliminated)' with boundary conditiona at

the deceleration peak,. and a continuous linkage to the outer

space. For all quantities ofinterest for engineering purposes

a similarity law will hold, andRe.1 provides the law of simi-

larity for each of them.

2 - Limiting conic parameters

The limiting .conic pazamaters chosen in Ref. 1 arepras said

above, the total .energy:

E = V2 - -L (9)
r

and the .areal .velocity (or angular momentum):

v = Vrcos6 (10)

They can also be made. nondimensional, -and !so the -two inde-

peildent parameters 6:, K can be defined:

E h/r,

' 
=(11)

h r,
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The above choice, although correct in principle needs a re

consid-.r-tio- in view of guidance problems.

In fact, an adequate chbice shonld lead to a pair of parmeters

which be sufficiently uncoupled, that is. one depending almost

entirely on the velocity at a prescribed height, and the other

almost entirely on the angle at the same height In this w y re.-

entry conditions are well described by two such parameters. Now

it is easily seen that f is. dcepending only on V; this is not

the case with K with respect to the angle 6 .

The quation of nondimensional i1miting conic may be written

(Ref. 1):

I + tan2 6 =+

K(I f)2

The v lu y, .f tan2O at DR (e 0) a consequ ntly given

by,

I + 
(12)

K

It should be pointed out that X is not the angle of the actual

t ajectooy at DP (it.. val.,e has been denoted by 0* ) nor is it

necessarily a positive value: in fact, if th lim :ng coni pert

gee is higher that r. , the angle -, r. i maginary, and X is

negative.

In any case its value is sufficiently characteristic of the

beh.v'or of the limiting conic from he point of view of the an
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gle 0 , whereas e is most adequately representing the veloci-

ty V . The parameters e and X will be chosen throughout this

work for guidance analysis purposes.

3 - Guidance. errors and corresponding wariations of Uiiting conic.

Errors in guidance arise from. a wrong estimation of angle 6,

velocity VIat a given radius r

Obviously, such errors correspond to undue variations in .li-

miting conic parameters with respect to design values. Thus:

. = A(V) 1

(13)

= r A (V cosO)

whence also the -errors in nondimensional parameters Ae and AR

can be calculated:

Ae =AC(AV, A8)

(14)

A A: X (AV, 0

It is of particular interest to consider then case that quan-

tities such as AV , AO may be regarded as relatively small

changes about given values V and 0 . It is thus possible to

obtain Ae and &iX simply as:
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ae 6V + -- I

(15)

6X z V+ t e J
The above written partial derivatives, according to Eqs. (9),

(10),(11), have the expression:

S r,- 2V

V h

" " = 0

(16)

(.2. )r I h h -1S. ( -". )2(1 + tan2 V)2(- - )
5V r r r. V3

X= r, ) 2 2 tan9 (h/r,)-(h/r,)

-r CoS 2O I V'

The foregoing expressions can be transformed so as to depend

on. E x and from (which means that the dependency of gui-

dance. errors on limitingconic parameters is influenced - although

slightly, as it will be seen now - by the altitude).

In view of the application tosimilar:solutions, reference is

here made to nondimensional quantities, such as C. , (Ref. 1) given

by:

S 2 r. V (17)cv- v hT
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and so the following relationships are obtained

acvc- . 2 + +I -

(18)

B)( 2% x+ 1
BC V  (C + i)(E + i -

2(), +, 2(jt ( + +

It is therefore easily shown that.
BE

i) since BO = 0 , E is insensitive to angle variations;

( ii ). since e has generally small values, X 3- essent ally

depending on 6

(iii) the above indicated partial derivatives are depending

- although slightly- on- the xalue of f , i.e., on the al-

titude at which the errors are consider d

The above said conclusion hold also fo' finite error-, al

though the dependency is not so easily shown.

,4 - Effects on trajectory quantities

In Re.1 1, Part I,. it is shown as said that entry condi-

t'was are repmesented by the nondimensional parameters of the

limiting conic (in this paper the quantities E and X have
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been selected as typical quantities). It is also shown that all

the quantities related to the trajectory, such as total heat Q

heat rate q ; velocity V , time t , angular range y , etc.,

can be represented in. a similar' form, i.e,, as the product of

a unit dimensional quantity (de*n4iug on the characteristics of

a particular body being consi.dere&) by anondimensional quantity

(which is related only to E ai x i.e., independent on the

body itself). Thus, fLio.

Q = Q1 (body) -CQ(,E , X) (19)

A complete summary of quantities such as Q1 , q, I V,, etc.,

and of the coefficients CQ. Cq, C. etc., is given in Tab.I,

Bef. 1.

It is also shown in Ref 1 as said above, that an alternative

approach to the problem is to prescribe ratio n. of maxtmum dece

leration (at DP, of course) to local gravity and angle 6, at

the same point; such values, can he used as initial conditions

(for C = 0 ) and so the relationship. between entry and DP con-

ditions are simply given through the equations:

(20)

Thr= e..s Jt
There exist no simpler means to establish Eqs. (20) than a step-
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-by-step integration of Eq.(6). Approximate analytical formulas

will be obtained later.

The question now arises in which practical way, the effects

of the variations A-6 , AX of the foregoing Art. on n. CQ

Cq I C v , etc. , can be evaluated.

For this purpose the following procedure canbe used. On a E,

X cartesian diagram the curves n*=onst, e*=const, CQ = const,

etc., are plotted; so at every point (describing a particular

entry conditions), the values of n. , 9. , CQ Cq , etc. ,

can be read (Fig.l). (Hereafter the generic property is denoted

by P , and its nondimensional symbol by CP ).

X Co = cons t

Fig. 1 - Charts for similar solutions.

When charts similar to that of Fig. 1 are ready and available,

any guidance problem can be solved:
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( i ) Evaluation of effects such as the tCP corresponding to

prescribed variations Ae , AX is simply made by consider

ing the point of coordinates E +AE , X+ 6X  and reading

on the new points the changed quantity CP +Atp (Fig.2);

X

X+ p

C con t.

Fig. 2 - Effecta of changes of limiting conic parameters.

(ii) If one considers two quantities P1 , P2 (such as, f.i.,

CQ and n, ),,the question arises to find guidance require

ments so as to allow maximum changes, about the design con

ditions, of value +A' ,' ; ; ; -A"P (Fig.3)

In this case the shaded area describes the range of per-

mitted variation of E , x about the starting point;

(iii) It is also possible. to obtain relationshipsconnecting

maximum alLtwable Ax to a prescribed AC (and vice versa);

this can be accomplished by associating to each A (Fig.4)

the corresponding value of AE. If Ae and AX are trans-

formed into AC V and A6 as described in the previous
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Fig. 3 - Evaluation of maxama allowable error.

Article, a complete guidance requirement analysis can be

performed.

Fig. 4 - nax AX for a prescribed Ae.
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5 - Conic-DP charts

There appears to be a particular interest in quantities at DP

(6. and n.). The importance of n* is stressed byits engineer-

ing meaning itself: whereas 69 is important mainly in regard

to the fact that it determines scale.length (Eq. (2)).

Approximate relationship can be derived in this field. Their va

lidity is enhanced by the fact that - in contrast to local ap-

proximate relationships - they are of average, or global, kind,

and so are reasonably little influenced by the approximations

themselves.

The general equations (6) are fjrstly re-written for sake of

clearness-

d log~h/w') kp (I L
o&+ k (I - tanG) =

dr sinG D

(21)

d 1 h L kpr 2 -d_( 2 2 + - - - =0

dr r2cos26 92 D cos'O

(for symbols, see Glossary).

It i4 well known.that, as p a~paraches.zero, *4 andE approach

constant values, say w. and E. ; and theflightpath.angle 8c

follows the law:

2 - 2 + rI (22)
Ca& 11
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Introducing the nondimensional density:

x = ( L (23)
r

and letting:

tan2 O tan2 8c + OAx) (24)

q(x) must vanish at infinity (z=O), and must satisfy the dif-

ferentikl equation:

d4 h h L a. sin9, zi. /) (25)
az -d + 20 = r( -j - )- D ( cos38

With a proper choice of the coefficients it As always possible

to set:

h h
r ( ) 7 %z" (ao = 0)

W2 02R0

(26)

L " sinO. L a. sinO, 6

D coa JD 6cos3, b

and so, it is obtained from Eq.(25):

a b. X,+.g(I.-a) )  I a x"

o" 2 +can c(n~+I a oa 0

b
+ _a n + -(I/a) (27)n+1
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The problem is thus reduced to find the coefficients a. and

b. The first set of them (the a,,'s)'is obtained approximately

by stopping the expansion at n=2 , and by imposing at DP the

following conditions:

W= W2

dw2  d e2  as obtained from the equation of

ddr r * motion and by.the conditions at DP

d 2wt  dW 2

dr dr

Simple algebra (App.I) then provides the relationships:

- X =( F1  (28)

+z e+

-log '
E+1

sin *.
,- = F2

3 tX + + 1-2

(29)
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where:

SF, (, ,n.)

(30)

F 2 = F2 (9s, n.)

are functions of quantities at DP, given in Appendix. j* is the

point at which density is sensibly zero. The system (28) (29)

provides approximate conic-DP relationships.

6 - Typical Results

Fig. 5 shows the conic-DP charts for an unmodulated re-entry

with lift. The cases L/ID=O; L/D--0.1 ;LID = 0.2;LI D =0. 5 wee

considered.

It is seen that curves n,= const. can cut each other: this

simply means that ,the same entry condition is corresponding to

more than. one deceleration peak. In the same plane it is also

very easy to determine the kind of limiting conic (according to
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the sign of E ). On the same plot.curves suchas skipping limit,

re-exit on a circular orbit, homeless re-exit into space may also

shown. (Mere only the L/D 0 0 case is presented)

Similar results are obtained for other values of LID: it is

seen however that increase of LID gives rise to a softer trend

in the above said curves. Furthermore no cases of more than one

DP have been found.
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PART II

SMALL-PERTURBATIONS THEORY

IN BE-ENTRY TRAJECTORIES

I - General considerations

The analytical model which was hitherto considered is a sim-

plified one, i.e., a nonrotating radially symmetric planet and a

radially symmetric atmosphere where the density is varying ac-

cording to a prescribed law.

A more realistic picture of the phenomena must be however be

considered sometimes. The effects of the simplifying assumptions

can be evaluated by considering the effects of such assumptions

as disturbances superimposed to the base-trajectory. Likewise,

maneuvers during re-entry, in order to improve the ;accuracy of

a safe landing can also be studied as perturbations superimposed

to the base-trajectory.

The following Articles are devoted to evaluate the effects of

a generic perturbation. It is assumed that such perturbation be

a first-order one, so that a linearized theory can be applied.

The theory developed in Ref. I is based on Eqs.(l). They can

be resolved along the tangent t to the trajectory and along its

normal n in terms of accelerations. They can be written insym-
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bolic form

(31)

[a n =0

whereas on the bi-normal the equation provides identically 0=0.

A disturbing.acceleration of.components Aat , Aan , Aab is

now considered, -small enough .to allow to discard changes in terms

such as [at] [an] The equation o-f motion is consequently writ

ten as:

ra.] -+ Aa - 0

[a.] + Aa = 0 (32).

Aa6 = 0

If, as said above, first-order -effects are considered, the

evaluation of the effects due to Aa t , Aa., Aac, can be made

by considering a "unit" solution, and -then superimposing the ef-

fects of the various perturbations.

2 -,Unit perturbation

A~generic point P (defined by its distance, r from the

planet center) of a re-entry trajectory is considered (Fig. 6);

the perturbation acting there is re-solved al6ngr thathree lines

(tangent, normal, bi-normal). The effect of Aat is an abrupt
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b i- normalI P."-dr

A a't gent
~No rma I

r

Fig. 6 - Unit perturbation

change in the total velocity given by:

dV = Aa t • dt (33)

(where dt is the time elapset to travel the distance dr). The

effect of Aa is an abrupt change in flight path:

AG
dO - dt (34)

The effect of Aa, i-s a raLa! on of the plane of the trajectory.

__=bt (35)
V

Since dt =dr/(Vs-inO) the forexning equations can bewritten
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WV &van drV c'in 0

dO = aZ dr (36)
V2 s inid

* tAaidr
V2 sin0

Since no perturbation are acting after P , the equations of

the -disturbed trajectory after auch point are the same of the

undisturbed one; .with.the conditions.. that velocity, flight path

angle, and plane.rotation at P are V+dV, 0 +dO, dy .

This is equivalent to say that the portion of trajectory fol-

lowing the point of perturbation is an indisturbed trajectory

such that:

(a) the plane is rotated of dp

(b) the limiting conic parameters are changed of such quantities

de, dX that the variations dV, dO are produced at P

In other words, the soLutioncorrespondingto the perturbation

is the one indicated-in Fi&.7. Before r , the equations of the

trajectory are the mndisturbed ones and (e ,X) are the limiting

conic paraineters; after r the equations are still the undis-

turbed ones, and .Ce + de .X + dx) are the limiting conic para-

meters. Besides that, the plane of the trajectory is rotated of

an angle dW about the focal axis of- the limiting cquic.

Naturally the queastion. arises as how to relate de , dX to

dV , dO , and vice-versa. This is very simply done by calculating
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undisturbed
equat tons lisiting conic

parameters: e ,X

undisturbed
equations

limiting conic
parameters: c+dE, X(ad

Fig. 7 - Ohange.in limiting conic parameteis.

three trajectories: one corre.ponding.to , X.) ; one -corres-

ponding to (e +S , X) ; one to '(e, X+SX). If , SX are

sufficiently small, by comparingquantities corresponding tothe

same , one has, f.i.;

Z( V/V.) _(V/V.) eSe, X - (V/V.),,O (37)

and so for all the other derivatives, such as:

w(V/V) a so a

whe-ace, by simple inversion, also partial derivatives such as:
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BE E X B)(

B(V/V,) ; (V/V,) ' are evaluated.

Thus, coming back to the unit solution, the limiting conic of

the points following p has. parameters E+dE X+dX where:

_ _ _ _ _ A a t E A a .
dE =  dr + dr

-(V/V,) VV~sinO -6 V2sinO

______ ~ ~a(38)

B A a t d r 4 
!' a- dr

d 3(V/V,) VVsinO 36 V2sin 8

and a rotation dp of its plane:

= Aabdr (39)
V2 si n

3 - Distributed perturbations

If a continuous distribution Aa t , Aan , Aa b of perturbations

is applied to the trajectory, eaci element of it can be considered

as a portion of a trajectory having as limiting conic e + Ae ,

X + AX where AE and AX  are the sum of the quantities de, dX

preceeding the point under concern. And, so:

r Be Aa 1 BE Aa )
fif -(V/V,) VV, sinO -aO V2sinO

Ax jf* 6(t + 2- ... ) dr (40)

". if. B(V/V,) VV, sinL9 BO V2sinO

f 'n 
A ab d r

VnV2OsVinO n

=r
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which is the general answer to the small perturbations theory in

re-entry trajectorie-s. This means that each element can be thought

as that of limiting conic Ac , Ax . To calculate Ac and A X

it. is necessary to know.

i the four partial derivatives , etc.

(ii) the base trajectory;

06.1) and - of course - the disturbances.

ix is alio ,seen that the small-perturbations theory can be

applied to similar solutions

Indeed Eqs k40) can be written.

AE -L- r Aa~ I I __ a8( v/'v. v!.  st-- W V--2 (V I Vv. , )2it (i-f)2

r. rA a t ____ IAx
j 1 ' -a(V/V*) v in W V2 (V/V,)2sinO (1-6)2

,Aa, 1 9 (41)
A - V2, (V.,", )2 s nO i-

where only s.milar quantities are appearing. Obviously. new pa--

rameters must be considered Auich arise fromthe actual expres-

sions of quan,.ities such a.- , i Aa , Aab.

Once the quantities A / Ay have been calculated, the

perturbed velocities and ang. ,s at every point of the trajec-

tory are given by
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BO 0

(42)

A(V/V,) ( V/V) AC + (V/V)A)

4 - Application to n n-conductive ablation

An application of the above theory can be made to the case of

bodies re-entry with a limited amount of ablation. The difference

from the non ablating case is now in the:circumstance in the fact

that the mass a is no longer constant, but is varying along the

trajectory according to the law:

da q

dt k

where K denotes the ablation coefficient (Ref.4).

If K is a constant:

Q (if) (44)

where Q(f)is the total heat transferred to the body from the be-

ginning up to the point being considered.

The aforesaid mass variation can-be considered, for every point

of the trajectory, as a perturbation of components-
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Aaw Aab  0 ; tAat = v-I I o
2 n n

%c. P A V2 a (45)
*0

k kP. V, a - no

2 m

and so:

Aa I k p VIQ (46)t 2 Kao

Relative ablation. corresponding to thetotal heat Qf transfer

red to the body up to landing is giveai by: (with -K= final mass):

-= - W. . (47)
n o  xxlO

and so:

Aa t k-- P. v2 4p.p(_) - (48)fAa, = ~ Q Tp v V*"o h;
2 no Qf 2 (g V) pro vi(4

Therefore Eqs. (41) of the foregoing Article provide:
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&6 - osinO* p V.&(.)2 ae3C____
Ia 0  2 p, V, a(V/V,) (l-e'Tsin7

n o

no= 
___

A= 0

which express the variations of limiting conic parameters cor-

responding to a total ablation (i = 0). For m O it isenough

to multiply the corresponding quantities by the ablation rate.

5 - Numerical example

A numerical case was calculated with the data of Fig. 8. In

'the same plot the velocity variation vs.6 is represented for a.

trajectory having a circle as limiting conic. The values of AV

refer to the case of complete ablation: in the case of partial

ablation it is enough.- as said above - to multiply the values
V

by the percentage of ablated weight. Thus, f.i., at DP (-!L=1),

the ordinate of the plot is 0.:24, and., -for an ablation of 30%,

one would have A 0. 08 . Similar considerations apply toV, -

the case of escape velocity (Fig.9). In this case the change of

velocity for an alation of 30% is -- -0 07. Both cases refer to

a maximum deceleration of lOg
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Fig 10 and Fig. 11 show respectively the flight path angle va-

riation for a complete ablation.

In this case the effect Ls to increase the angle. For the or-

bital speed an. ablation of M gives a ch.,nge of the angle of

about 1/8 of the unp*.rturbed value: the corr-syonding value for

the escape velocity is about 8%
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APPENDIX

DETERMINATION OF APPROXIMATE

CONIC- DP RELATIONSHIPS

1. Let:

hr.
z - (Al)

W2

Remembering (23): the first of Eqs.(26) is written,

I
* (R-z) = alz + a2 z2 + a3Z 3  (A2)

Denoting by a dot derivatives with respect to x , the con-

ditions on a, a?, a3  for identifying Eqs,(A2) and its first

and second derivative at DP, are:

z= a + a 2 + a3 + z

*- a z, =  a, + 2a, + 3a 3

2 1 -2. + -( +1) z. = 2a + 6a3

a he a

whence.
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(2+ +) 014_L 2+ +i(

a 2 2 a a a

ag =- z + 1 - ) z, - I( -l ( + - } z - m

a, z I) 3 1 1 (z.z,6)
a a a

(1- + ((1 +-)(2 -) " ,-Z})
2 a a a 2

If quantities of the order of 1/a are neglected as compared

to unity, one has finally:

a1 2. 21, + 3(z* z,)

a1  - . 3i. - 3(z, - za) (A)

=3 - * (z. - z.)
2

2. Evaluation of z, , z, is now performed.

Form the second of Eqa.(l), remembering hqs. (23), (2),(5), of

Part I:

dz asine z 77 X " i
t&

dx a sinO (I

whence:
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a -Oz[I -XT* tan 9,) (A4)

The second derivative is now performed. It is obtained:

S a ssin6 " /  {-( rose + sine +
Z aZ sin 2  os Coto

+ (I77x-1/h + z l/d / zjx" " )]
sin 0 a

The value of 0 at DP is obtained from the f.rst ofEq

and it is easily obtained

cot . z.7co s 0 ,.
* - - ,__;

a 2asin0. 2a

and so:

2. a,.sinG. cotOa zscos 3 ,. + .,, cos goz . - z , ,-[ + +'',
a a 2a sin , 2a sinto,

+ sinO. X 0/. -X.tan9.T * 02cos [. ine.

+ a. (I -X tanO.)] 
(AS)

3. Eqs. (24) and (27) yield at DIP:

X = tanlo. - , aba n "n

and, for n-3 in the sunk of a 's remembering (A3):
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2 1 . 5 • I II

a 6 6 6
(A6)

Since.

hr* a*sin , 1 X + I
Sn0co 2 9 K C +t

Eq. (A6) can be written

if X+ I

+6a t ( , no W)

where:

F1 (O., n.) tan2 tg 1 (Z. - 5z. + I1z.) (A)
6a

is a function depending only on quantities at DP.

In a similar way, from the second of Eqs.(l), by integrating

from DP up to infinity (and neglectiug LID tan y, and varia-

tions of k ):
2n.

Iog 2 1 a*sin . 1 + (L/D) I sinO8

. 3 6 a~tanS. 3 sini,

- oo ,,j (A9)
a, I n-I
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where O* is the lowest height at which 6 -O . By letting

sin 0 a! tan 6.

sin - t - I (WO)

whence.

-lot X +f I sin 2"- ; F,(n, 0,)
e+ 31

• E' I l_ )' -

with.

2n,

2 - 1 a.ain,. I + (LID)2. COS2o , w .b.F2 =- -_ in - -log Z*
3 6 a~tan 0. i n-

(All)

Eqs.(A7(All) are the same as Eqs.(28)(29) of Part I.



GLOSSARY OF SYMBOLS

a - normal acceleration (in Part I, coefficient of
Eq. (26))

a t  - tangent acceleration

bn  - coefficients of expansion (26)

CD - drag coefficient

g - gravity acceleration

h - gravitational constant

k -(cDA,)/m

m - body mass

n - ratio of deceleration to gravity

q - heat rate

r- radius from earth center

- time

V - areal velocity

x - nondimensional density

z - altitude

A - main cross-area

Cp - nondimensional value of generic P-property

D - drag

E - total energy

L - lift

P - point of trajectory

Q - total heat transferred

V - velocity
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a - planetary atmosphere constant

/3 - a/R

e - nondimensional total energy

- function defining lift modulation (Eq.(5))

7) - n': d menso al k (Eq (5))

K -- limiting onic p~rameter

x - parameter of lift modulation (Eq.(5))

8 - flight path angle

Y- otat.on of Flight plane

p - air density

- nondimensional altitude.(Eq.(4))

x - nondimensional conic parameter

LaR 1 components of perturbing accel-ration en -io.mal,

tA& J t ngent, bi normal, respectively
Aa

SUBSCR I PTS

* en-,tes valaes ,it DP

- values at infinity

I - reference values

C - values of limiting conic

f - final values
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